

Learning Non-Linear Functions for Text Classification

Cohan Sujay Carlos¹ Geetanjali Rakshit²

Aiaioo Labs, Bangalore, India

IIT-B Monash Research Academy, Mumbai, India

December 20, 2016

Cutline

1 Background

- 2 3-Layer Bayesian Models
 Product of Sums
 - Sum of Products
- 3 Linearity of "Product of Sums"
- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results
- 6 Conclusions

1 Background

2 3-Layer Bayesian Models
Product of Sums
Sum of Products

Outline

- 3 Linearity of "Product of Sums"
- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results
- 6 Conclusions

Cohan Sujay Carlos, Geetanjali Rakshit - Learning Non-Linear Functions for Text Classification

(日) (종) (종) (종) (종) (종)

Multilayer neural networks have been shown to be capable of learning non-linear boundaries.

Motivation

Questions:

• •

- Is there something special about neural networks?
- Can probabilistic classifiers also learn non-linear boundaries?
- In particular, can multilayer Bayesian models do so and under what conditions?

The joint probabilities factorise according to Equation 1.

$$P(x_1, x_2 \dots x_n) = \left(\prod_{1 \le i \le n} P(x_i | x_{a(i)})\right)$$
(1)

where a(i) means ancestors of node *i*.

The naive Bayes classifier is a special case two layers deep.

$$P(F,C) = P(F|C)P(C) = \prod_{f \in F} P(f|C)P(C)$$
(2)

The root node represents a class label from set $C = \{c_1, c_2 \dots c_k\}$ and the leaf nodes the set of features $F = \{f_1, f_2 \dots f_i\}.$

e Outline

1 Background

- 2 3-Layer Bayesian Models
 Product of Sums
 - Sum of Products
- 3 Linearity of "Product of Sums"
- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results
- 6 Conclusions

・ キロ・ キョ・ キョ・ キョ・ ショー もくの

In a 3-layer Bayesian model, there is also a set of hidden nodes $H = \{h_1, h_2 \dots h_j\}.$

$$P(F,H,C) = P(F|H,C)P(H|C)P(C)$$
(3)

From P(F, h, c) = P(F|h, c)P(h|c)P(c) we obtain 4 and 5.

$$P(F,c) = \sum_{h} P(F|h,c)P(h|c)P(c)$$
(4)

$$P(F|c) = \sum_{h} P(F|h, c) P(h|c)$$
(5)

イロン イロン イヨン イヨン 三日

Starting from f instead of F, we get 8.

$$P(f,h,c) = P(f|h,c)P(h|c)P(c)$$
(6)

$$P(f,c) = \sum_{h} P(f|h,c)P(h|c)P(c)$$
(7)

$$P(f|c) = \sum_{h} P(f|h,c)P(h|c) \tag{8}$$

You can derive the likelihood as follows.

$$P(F|c) = \prod_{f} P(f|c)$$
(9)

Substituting Equation 8 into Equation 9, we get Equation 13.

$$P(F|c) = \prod_{f} \sum_{h} P(f|h,c)P(h|c)$$
(10)

You can also derive the likelihood as follows.

$$P(F|h,c) = \prod_{f} P(f|h,c)$$
(11)

Substituting Equation 11 into Equation 5, we get Equation 14.

$$P(F|c) = \sum_{h} \left(\prod_{f} P(f|h, c) \right) P(h|c)$$
(12)

Two Likelihood Equations

Product of Sums

• •

$$P(F|c) = \prod_{f} \sum_{h} P(f|h,c)P(h|c)$$
(13)

Sum of Products

$$P(F|c) = \sum_{h} \left(\prod_{f} P(f|h, c) \right) P(h|c)$$
(14)

Cutline

1 Background

2 3-Layer Bayesian Models Product of Sums Sum of Products

3 Linearity of "Product of Sums"

- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results

6 Conclusions

- ・ロト・ ● ト・ヨト・ヨー・ つくの

If any classifier can be proved to be equivalent to a multinomial naive Bayes classifier, then it can only learn linear decision boundaries.

Consider a toy dataset consisting of two sentences, both belonging to the class Politics (P):

- The United States and
- The United Nations

• •

(TUSa) (TUN)

Proof of Linearity

One of the parameters a naive Bayes classifier would learn is P(The|Politics) = z.

$$\begin{array}{c}
 P \\
 z = \frac{2}{7} \quad TUSa \\
 TUN \\
 T
\end{array}$$

If a directed PGM learns the same likelihoods, which is a product of these parameters, it can only learn linear decision boundaries.

Proof of Linearity - Hard EM

The parameters of a multinomial 3-layer Bayesian classifier:

From Equation 13, $z = am + bn = \frac{1}{4}\frac{4}{7} + \frac{1}{3}\frac{3}{7} = \frac{2}{7}$

Proof of Linearity - Hard EM

• •

The parameters of a multinomial 3-layer Bayesian classifier:

From Equation 13, $z = am + bn = \frac{0}{0}\frac{0}{7} + \frac{2}{7}\frac{7}{7} = \frac{2}{7}$

Proof of Linearity - Soft EM

The parameters of a multinomial 3-layer Bayesian classifier:

From Equation 13, $z = am + bn = \frac{1}{3.8} \frac{3.8}{7} + \frac{1}{3.2} \frac{3.2}{7} = \frac{2}{7}$

e Outline

1 Background

- 2 3-Layer Bayesian Models
 Product of Sums
 Sum of Products
- 3 Linearity of "Product of Sums"
- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results
- 6 Conclusions

- ・ロト・御ト・音・・音・ 一直・ ろんの

Shifted and Scaled XOR

••

Sum of Products - Multinomial

- ▲日 > ▲国 > ▲国 > ▲国 > ④ ● ④ ● ●

••

- イロト イ団ト イヨト イヨト 三目 つくで

Cutline

1 Background

- 2 3-Layer Bayesian Models
 Product of Sums
 Sum of Products
- 3 Linearity of "Product of Sums"
- 4 Non-Linearity of "Sum of Products"
- 5 Experimental Results
- 6 Conclusions

- ・ロ・・ 『・・ キャ・キャー ヨー うくの

• •

Classifier	R8	R52	20Ng
Naive Bayes	0.955	0.916	0.797
MaxEnt	0.953	0.866	0.793
SVM	0.946	0.864	0.711
Non-linear 3-Layer Bayes	0.964	0.921	0.808

Table: Accuracy on Reuters R8, R52 and 20 Newsgroups datasets.

• •

Classifier	Movie Reviews
Naive Bayes	0.7964 ± 0.0136
MaxEnt	0.8355 ± 0.0149
SVM	0.7830 ± 0.0128
Non-linear 3-Layer Bayes	0.8438 ± 0.0110

Table: Accuracy on Large Movie Review dataset.

Accuracy on Movie Reviews

••

Accuracy on Movie Reviews

••

• •

Classifier	Accuracy
Naive Bayes	0.721 ± 0.018
MaxEnt	0.667 ± 0.028
SVM	0.735 ± 0.032
Non-Linear 3-Layer Bayes	0.711 ± 0.032

Table: Accuracy on query classification.

- ▲日マ ▲国マ ▲田マ ▲田マ ▲日マ

• •

••

Shape	GNB	GHB
ring	0.664	0.949
dots	0.527	0.926
XOR	0.560	0.985
S	0.770	0.973

Table: Accuracy on the artificial dataset.

e Outline

1 Background

2 3-Layer Bayesian Models Product of Sums Sum of Products

3 Linearity of "Product of Sums"

4 Non-Linearity of "Sum of Products"

5 Experimental Results

6 Conclusions

《 디 》 《 레 》 《 분 》 《 분 》 《 분 《) Q ()

- We have shown that generative classifiers with a hidden layer are capable of learning non-linear decision boundaries under the right conditions (independence assumptions), and therefore might be said to be capable of deep learning.
- We have also shown experimentally that multinomial non-linear 3-layer Bayesian classifiers can outperform some linear classification algorithms on some text classification tasks.

In our survey of prior work ...

Frrata

Hierarchical Bayesian models are directed probabilistic graphical models in which the directed acyclic graph is a tree (each node that is not the root node has only one immediate parent). In these models the ancestors a(i) of any node i do not contain any siblings (every pair of ancestors is also in an ancestor-descendent relationship).

The above statement which is found in our paper is incorrect. Hierarchical Bayesian models including ours are generally speaking DAGs.

Future Work

- Comparison of performance with deep neural networks; evaluation on image processing tasks; other training algorithms - Gibbs' sampling (MCMC), variational methods.
- Going from 3 layers to higher numbers of layers (solving the "vanishing information" problem).
- Integration with larger models, like sequential models (HMMs) and translation models (alignment models or sequence to sequence models).
- Probabilistic embeddings.
- Unified model covering Bayesian models and neural networks.

Thank you!

Cohan Sujay Carlos & Geetanjali Rakshit cohan@aiaioo.com