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Abstract

We show that it is possible to derive a
classifier (the Perplexed Bayes classifier)
that makes classification decisions that are
identical to those of the Naive Bayes clas-
sifier but with better-calibrated posterior
probability estimates. We also show that:

• The classifier’s posterior probability
equation is possible to derive starting
from a certain set of assumptions.
• The aforesaid assumptions imply the

absence of naive class-conditional
feature independence assumptions.
• The classifier, with the introduction

of an approximation to assign the
prior probability the same weightage
it is assigned in the Naive Bayes clas-
sifier, provably makes the same deci-
sions as a Naive Bayes.
• This approximated classifier has a re-

liability curve that is closer to the
ideal than the Naive Bayes’.

Thus we show that there is good reason
to believe that the naive independence as-
sumption (that the features are all class-
conditionally independent of one another)
used in the Naive Bayes classifier is not
essential to its performance, whereas dis-
carding it could result in better posterior
probability estimates.

1 Naive Bayes

Probabilistic classifiers work by selecting the most
probable class given the features of the data point
being classified, as shown in Equation 1.

argmax
c

P (C|F ) (1)

Bayesian classifiers transform P (F |C) into
P (C|F ) as shown in Equation 2.

P (C|F ) =
P (F |C)× P (C)

P (F )
(2)

The Naive Bayes classifier also uses the as-
sumption that the features f1, f2, f3, etc. are all in-
dependent of one another, conditional on the class
C, yielding the following equation.

P (F |C) =
∏
i

P (fi|C) (3)

Equation 3 can be substituted into Equation 2 to
obtain Equation 4.

P (C|F ) =

(∏
i P (fi|C)

)
× P (C)

P (F )
(4)

The posterior probability estimates (i.e., esti-
mates of P (C|F )) obtained using Equation 4 tend
to be extreme, as observed in Eyheramendy et
al (2003).

P (C|F ) Points PB Acc Points NB Acc
0.5-0.6 387 0.6149 26 0.5000
0.6-0.7 421 0.8361 22 0.3636
0.7-0.8 439 0.9703 26 0.5000
0.8-0.9 300 0.9766 42 0.5238
0.9-1.0 43 1.0000 1474 0.8792

Table 1: Perplexed and Naive Bayes classifier ac-
curacies for different confidence intervals (average
of 24.4 features, and overall accuracy of 0.85).

We can also observe the tendency to return ex-
treme posteriors in the last two columns of Ta-
ble 1 which shows the number of data points that
were classified with posterior probabilities (con-
fidences) in various ranges between 0.5 and 1.0
by the Naive Bayes classifier (on the name gender
classification task (Carlos, 2015)).

It can be seen that most of the data points were
classified with a confidence of greater than 0.9.



What we’d like to have is a classifier whose con-
fidences are distributed evenly between 0.5 and
1.0 as shown in the first two columns of Table 1.
We were able to create such a classifier by using
the Perplexed Bayes posterior probability equation
described in the next section.

However, the intuition behind the Perplexed
Bayes equation was obtained through the simula-
tion described below.

1.1 Naive Bayes Simulations

We attempted to understand through a simulation
why the posterior probabilities returned by a Naive
Bayes classifier tend to be extreme.

For the simulation of the Naive Bayes classi-
fier, we use a table of all possible combinations of
classes and features and assigned the joint prob-
abilities by picking a random value between the
number obtained by multiplying the probabilities
of all the features (given a class) together for each
row, and 80% of that number, and then normaliz-
ing the values in all the rows so that they add up to
1 as shown in Table 2.

Class f1 f2 P (f1, f2, C) P (C|f1, f2)
c1 0 0 0.4565 0.8120
c1 1 0 0.0040 0.0180
c1 0 1 0.0264 0.2106
c1 1 1 0.0003 0.0028
c2 0 0 0.1057 0.1880
c2 1 0 0.2159 0.9820
c2 0 1 0.0991 0.7894
c2 1 1 0.0922 0.9972

Table 2: Simulation Probabilities Table.

This method yielded a standard deviation of the
posterior probabilities P (C|F ) of 0.4345. This
turns out to be higher than the standard deviation
of the class conditional feature probabilities used
to generate the joint probability table, which is
0.2880 and higher than the marginal probabilities
of the individual features given the class P (fi|C)
computed from it, which is 0.3648.

This suggests that the procedure used to gener-
ate the joint probability table (the combination by
multiplication of marginal probabilities into joint
probabilities) results in posterior probabilities that
tend towards 0 or 1.

It is seen from Figure 1 that as the number of
features increases, so does the standard deviation
of the simulated posterior probabilities.
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Figure 1: The standard deviation of posterior prob-
abilities simulated from class conditional feature
probabilities with average divergence of approxi-
mately 0.2.

It can be seen that the experimental results in
Figure 2 closely resemble the simulation results in
Figure 1. In both, as the number of features in-
creases, the posterior probabilities tend to get in-
creasingly extreme.

In the simulation results in Figure 1, the poste-
rior probabilities appear extreme even when com-
puted through marginalization and not just when
computed using the naive bayes assumption.

This perhaps shows that the cause of the ex-
tremeness in predictions is the multiplication op-
erator used to combine class-conditional feature
probabilities, because the joint probability distri-
bution was generated by choosing random values
between the number obtained by multiplying the
probabilities of all the features (given a class) to-
gether for each row, and 80% of that number, and
then normalizing the values in all the rows so that
they add up to 1.

So, the multiplicative combination of probabili-
ties was used to generate the joint probability dis-
tribution in Table 2. As we see in Figure 1, that
alone sufficed to make the posterior probabilities
(computed merely through marginalization) as ex-
treme as those in the experiment whose measured
posterior probabilities are as shown in Figure 2.

This suggests that the log ratio of the multiplica-
tive combinations of two sets of random probabili-
ties (of the same cardinality) tends to the extremes
of the space of real numbers as the cardinality of
those sets tends to infinity.



8 12 16 20 24 28
0

0.1

0.2

0.3

0.4

0.5

Feature Count

St
d.

D
ev

.o
fP

(C
|F

)

Figure 2: The standard deviation of the posterior
probabilities of a Naive Bayes classifier plotted
against the number of features (on the gender clas-
sification task (Carlos, 2015)).

2 Perplexed Bayes

As we saw in the preceding section, the reason for
the extreme posterior probability estimates of the
Naive Bayes classifier seems to be the multiplica-
tive combination of the class-conditional feature
probabilities.

In this section, we propose a posterior probabil-
ity equation that does not suffer from the problem
described above. The equation uses the geometric
mean of the class-conditional feature probabilities
instead of their product. We show using a simula-
tion that the resulting posterior probabilities tend
towards the center (0.5) as the number of features
increases.

We later show experimentally that the posterior
probabilities can be spread out evenly for the range
of feature counts encountered in the gender classi-
fication task (Carlos, 2015) through the use of an
attenuation coefficient as shown in Equation 37.

First, we shall explain how the geometric mean
is related to the perplexity operator (which gives
the Perplexed Bayes classifier its name).

The perplexity PP (p1, p2, . . . pn) of a set of
probabilities {p1, p2, . . . , pn} is computed as
shown in Equation 5.

PP =
1

(p1 × p2 × . . .× pn)
1
n

(5)

So, the reciprocal of the perplexity of the proba-
bilities is their geometric mean as shown in Equa-
tion 6.

PP –1 = (p1 × p2 × . . .× pn)
1
n (6)

In the Perplexed Bayes classifier, we combine
the class conditional feature probabilities using the
geometric mean, as shown in Equation 7.

P (F |C) =

 ∏
1≤i≤n

P (fi|C)

 1
n

(7)

As a result, the posterior probability equation
of the Perplexed Bayes classifier becomes the one
shown in Equation 8, where n is the number of
features, and N is the normalizer.

P (C|F ) =

∏
i P (fi|C)

1
n × P (C)

N
(8)

Equation 8 was, to our knowledge, first reported
in the work of Zaidi et al (2013).

We will attempt three proofs in the rest of this
report and argue that they strongly suggest that
the ‘naive’ independence assumptions in the Naive
Bayes classifier do not contribute to its accuracy.

The three proofs are as follows:

• Proof 1: That the Perplexed Bayes poste-
rior probability equation can be derived
from the assumption that the class C is in-
dependent of all features but one, and none
of the features is special.

• Proof 2: That the above assumption can
be shown to not place any constraints
on features; that joint probability distri-
butions that comply with the conditions
of class-conditional feature independence
and joint probability distributions that
don’t, are both compatible with the above
assumption.

• Proof 3: That the classification decisions of
the Perplexed Bayes classifier (with an ap-
proximation to reduce the weightage given
to the prior) are identical to the classifica-
tion decisions of the Naive Bayes classifier.

These three proofs fall short of allowing us to
claim with certainty that the accuracy of the Naive
Bayes is not in any way connected to its naive
class-conditional feature independence assump-
tion, because we have only been able to show that
the Perplexed Bayes posterior probability equation
can be derived from the assumption and not the
other way around, and because the decisions of



the Naive and Perplexed Bayes classifiers are the
same only if the assumption changing the prior’s
weightage as shown in Equation 40 is made.

3 Proof 1:

We attempt to prove below that Equation 8 can
be derived from the assumption that the class C
is independent of all features but one, and none
of the features is special.

The assumption can be encoded as shown in
Equation 9 (where 1 ≤ i ≤ n).

P (C|f1, f2, . . . fn) = P (C|fi) (9)

We can write Equation 9 in n different ways, as
follows, because no feature is special.

P (C|f1, f2, . . . fn) = P (C|f1)
= P (C|f2)

...

= P (C|fn)

(10)

Multiplying together all the terms on both sides
of Equation 10 we get Equation 11.

P (C|f1, f2, . . . fn)n =

=
∏

1≤i≤n
P (C|fi) (11)

Inverting the terms on the right-hand side of
Equation 11 using the Bayesian inversion equation
(2), we get Equation 12.

P (C|F )n =

 ∏
1≤i≤n

P (fi|C)× P (C)

P (fi)

 (12)

Since P (C) is independent of i, we can write
Equation 12 as Equation 13.

P (C|F )n =

 ∏
1≤i≤n

P (fi|C)


× P (C)n∏

1≤i≤n P (fi)

(13)

P (C|F ) =

 ∏
1≤i≤n

P (fi|C)

 1
n

× P (C)

N
(14)

Finally, taking the nth root on both sides, we get
Equation 14 (where N is the normalizer) and this
is substantially the same as Equation 8.

Q.E.D: So we have shown that the assump-
tion that the class C is independent of all fea-
tures but one, and that none of the features is
special leads to Equation 8.

Below, we describe an alternate formulation of
Equation 8.

3.1 Alternate Formulation

It is interesting to note that Equation 19, represent-
ing the posterior probabilities of a classifier that
uses the arithmetic mean instead of the geometric
mean, can be derived from Equation 10 as well.

P (C|F ) =

 ∑
1≤i≤n

P (fi|C)

× P (C)

n×N
(15)

Adding together all the terms on both sides of
Equation 10 we get Equation 16.

P (C|f1, f2, . . . fn)× n =

=
∑

1≤i≤n
P (C|fi) (16)

Inverting the terms on the right-hand side of
Equation 16 using the Bayesian inversion equation
(2), we get Equation 17.

P (C|F )× n =

 ∑
1≤i≤n

P (fi|C)× P (C)

P (fi)


(17)

Since P (C) is independent of i, we can write
Equation 17 as Equation 18.

P (C|F )× n = P (C)×

 ∑
1≤i≤n

P (fi|C)


× 1∑

1≤i≤n P (fi)
(18)

Finally, dividing by n on both sides, we get:

P (C|F ) =

 ∑
1≤i≤n

P (fi|C)

× 1

n
× P (C)

N

(19)
Now, we have proved that a certain assumption

leads to the Perplexed Bayes posterior probability
equation.



However, we have not shown that the assump-
tion itself can be realized in the form of a probabil-
ity distribution, that probability distributions that
satisfy that assumption exist.

Below, we show that probability distributions
that satisfy the assumption that the class C is in-
dependent of all features but one, and that none
of the features is special exist and that the con-
straints do not require that the features be class-
conditionally independent.

3.2 Illustration
Here, we provide an example of a distribution that
satisfies Equation 10.

Assume the set of all possible categories to be
C = {c1, c2} and the set of features to be F =
{f1, f2} where each of the features fi is boolean
and can take the values {true, false}.

Equation 10 yields the following equations:

P (C = c1|f1 = true, f2 = true)

= P (C = c1|f1 = true)

= P (C = c1|f2 = true)

(20)

P (C = c1|f1 = false, f2 = true)

= P (C = c1|f1 = false)

= P (C = c1|f2 = true)

(21)

P (C = c1|f1 = false, f2 = false)

= P (C = c1|f1 = false)

= P (C = c1|f2 = false)

(22)

P (C = c1|f1 = true, f2 = false)

= P (C = c1|f1 = true)

= P (C = c1|f2 = false)

(23)

P (C = c2|f1 = true, f2 = true)

= P (C = c2|f1 = true)

= P (C = c2|f2 = true)

(24)

P (C = c2|f1 = false, f2 = true)

= P (C = c2|f1 = false)

= P (C = c2|f2 = true)

(25)

P (C = c2|f1 = false, f2 = false)

= P (C = c2|f1 = false)

= P (C = c2|f2 = false)

(26)

P (C = c2|f1 = true, f2 = false)

= P (C = c2|f1 = true)

= P (C = c2|f2 = false)

(27)

By equating the right-hand side, you get two
sets of equations as shown in Equation 28 and
Equation 29.

P (C = c1|f1 = true) =

P (C = c1|f1 = false)

= P (C = c1|f2 = true)

= P (C = c1|f2 = false)

(28)

P (C = c2|f1 = true) =

P (C = c2|f1 = false)

= P (C = c2|f2 = true)

= P (C = c2|f2 = false)

(29)

Equation 28 and Equation 29 are satisfied by
any values of P (C = c1|f1 = true) and P (C =
c2|f1 = true) that are positive and sum to 1.0.

Thus we have shown that distributions that sat-
isfy Equation 10 do exist.

4 Proof 2:

We attempt to show below that the assumption
that the class C is independent of all features but
one, and none of the features is special is com-
patible with class-conditional feature probabil-
ity distributions that do not reflect naive inde-
pendence assumptions.

It can be shown that the independence of classes
and features P (C|F ) = P (C) is a direct result of
Equation 10 as follows.

P (ci) =
∑
F

P (ci, F ) =
∑
F

P (ci|F )P (F )

(30)
But, since P (ci|F ) is a constant mi by reason

of Equation 10, we get:

P (ci) = mi ×
∑
F

P (F ) (31)

But,
∑

F P (F ) = 1.
So, P (ci) = mi = P (ci|F ) for all i.
So, it has been shown that Equation 10 implies

that P (C|F ) = P (C) and therefore the features
are independent of the classes.



Moreover, it can be seen that the constraints in
Equation 10 are only constraints on the classes.

It follows that the features are not constrained
in any way by Equation 10 and do not have to be
class-conditionally independent of one other.

Q.E.D: Thus we have shown that the assump-
tion that the class C is independent of all fea-
tures but one, and none of the features is spe-
cial is compatible with class-conditional fea-
ture probability distributions that do not reflect
naive independence assumptions.

We can also demonstrate the independence of
classes from features by using the bayesian inverse
of the above equations as follows:

The above equations also show that if Equa-
tion 28 and Equation 29 are true, then Equation 32
and Equation 33 (below) are also true.

P (C = c1|f1 = true) =

P (C = c1|f1 = false)

= P (C = c1|f2 = true)

= P (C = c1|f2 = false)

= P (C = c1)

(32)

P (C = c2|f1 = true) =

P (C = c2|f1 = false)

= P (C = c2|f2 = true)

= P (C = c2|f2 = false)

= P (C = c2)

(33)

Moreover, by using Bayesian inversion as
shown in Equation 2, we can obtain the following
equations from Equation 28 and Equation 29.

P (C = c1|f1 = true) =

P (C = c1) =

P (f1 = true|C = c1)× P (C = c1)

P (f1 = true)
=

P (f1 = false|C = c1)× P (C = c1)

P (f1 = false)

=
P (f2 = true|C = c1)× P (C = c1)

P (f2 = true)

=
P (f2 = false|C = c1)× P (C = c1)

P (f2 = false)

(34)

P (C = c2|f1 = true) =

P (C = c2) =

P (f1 = true|C = c2)× P (C = c2)

P (f1 = true)
=

P (f1 = false|C = c2)× P (C = c2)

P (f1 = false)

=
P (f2 = true|C = c2)× P (C = c2)

P (f2 = true)

=
P (f2 = false|C = c2)× P (C = c2)

P (f2 = false)

(35)

Cancelling P (C = c1) and P (C = c2) every-
where, we obtain Equation 36.

P (f1|C = c1) = P (f1)

P (f2|C = c1) = P (f2)

P (f1|C = c2) = P (f1)

P (f2|C = c2) = P (f2)

. . . P (F |C) = P (F )

(36)

The above equations also show that the classes
are independent of the features.

Thus we see from the above that the Perplexed
Bayesian assumption, though it is an indepen-
dence assumption, does not assume the class-
conditional independence of the features used.

In other words, the features do not have to be
class-conditionally independent of one another to
satisfy Equation 9.

We illustrate below through examples that
class-conditional feature probability distributions
that conform to naive independence constraints
and class-conditional feature probability distribu-
tions that don’t both satisfy Equation 9.

4.1 Examples

We shall illustrate the lack of constraints on fea-
tures with a few examples.

Take two fair coins tossed simultaneously. The
probability of either of the coins turning up heads
P (H) is 0.5.

If the two coins were independent of each other,
the probability of both coins turning up heads
P (H,H) would be as depicted in Table 3 (bear-
ing in mind that P (f1, f2|c1) = P (f1, f2) by Equa-
tion 36).

On the other hand, if the coins were to be
welded side by side, so that when one fell heads,



Coin 1 (f1) Coin 2 (f2) P (f1, f2|c1)
H H 0.25
H T 0.25
T T 0.25
T H 0.25

Table 3: Joint Probabilities for Independent Coins.

the other would as well, the joint probability distri-
bution would be as shown in Table 4 (again bear-
ing in mind that P (f1, f2|c1) = P (f1, f2) by Equa-
tion 36).

Coin 1 (f1) Coin 2 (f2) P (f1, f2|c1)
H H 0.5
H T 0.0
T T 0.5
T H 0.0

Table 4: Joint Probabilities for Welded Coins.

Now if we were to use a conditional probabil-
ity distribution table that satisfied Equation 9, like
Table 5, we would find that the probability distri-
bution in Table 3 and the one in Table 4 both yield
joint probability distributions that meet all the con-
straints of Equation 9.

f1 f2 P (c1|f1, f2) P (c2|f1, f2)
H H 0.3 0.7
H T 0.3 0.7
T T 0.3 0.7
T H 0.3 0.7

Table 5: Perplexed Bayes Conditional Probabili-
ties.

The joint probability distribution obtained by
combining the distribution in Table 3 with Table 5
is Table 6.

The joint probability distribution obtained by
combining the distribution in Table 4 with Table 5
is Table 7.

The joint probability distributions in Table 6 and
Table 7 both satisfy Equation 9.

For example from Table 7 (the joint probability
table computed from features welded together), it
can be easily seen that P (C = c1) = 0.3 and that
P (C = c1|f ∈ {H,T}) = 0.3 and that P (C =
c1|f1 ∈ {H,T}, f2 ∈ {H,T}) = 0.3.

The same values of P (C = c1) = 0.3, P (C =
c1|f ∈ {H,T}) = 0.3 and P (C = c1|f1 ∈

f1 f2 P (c1, f1, f2) P (c2, f1, f2)

H H 0.3/4 0.7/4
H T 0.3/4 0.7/4
T T 0.3/4 0.7/4
T H 0.3/4 0.7/4

Table 6: Joint Probabilities for Independent Fea-
tures.

f1 f2 P (c1, f1, f2) P (c2, f1, f2)

H H 0.3/2 0.7/2
H T 0 0
T T 0.3/2 0.7/2
T H 0 0

Table 7: Joint Probabilities for Welded Features.

{H,T}, f2 ∈ {H,T}) = 0.3 are obtained from
Table 6 where the features are class-conditionally
independent of each other.

So, the Perplexed Bayes assumption, unlike the
Naive Bayes assumption, does not forbid complete
dependence between the features used in classifi-
cation.

We show below using simulations that the pos-
terior probabilities of the fully Perplexed Bayes
classifier described above tend to the middle (to
0.5) as the number of features increases.

4.2 Perplexed Bayes Simulations

By simulating the posterior probabilities produced
by Equation 14, it can be seen that the posterior
probabilities are less extreme as compared to the
posterior probabilities produced by a Naive Bayes
classifier for higher feature counts, as shown in
Figure 3, and that they decrease as the number of
features increases.

4.3 Generalization

In order to distribute the probabilities more evenly,
so that they tend neither to the extremes nor to the
middle, we attempted to find a way to mitigate the
degree of averaging of the class-conditional fea-
ture probabilities.

It appeared possible to find that middle ground
between the Naive Bayes classifier and the
fully Perplexed Bayes algorithm described above,
through the use of an attenuation coefficient k in
the geometric mean as shown in Equation 37.

PP –k = (p1 × p2 × . . .× pn)
k
n (37)
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Figure 3: The standard deviation of the poste-
rior probabilities produced by Equation 14 plotted
against the number of features simulated.
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Figure 4: The standard deviation of the poste-
rior probabilities produced by Equation 38 plotted
against the number of features simulated, for dif-
ferent values of the attenuation coefficient k.

By substituting Equation 37 in Equation 2, the
posterior probablity equation for the generalized
case of the Perplexed Bayes classifier can be writ-
ten as shown in Equation 38.

P (C|F ) =

 ∏
1≤i≤n

P (fi|C)

k
n

× P (C)

P (F )
(38)

Again, a simulation showed that different atten-
uation coefficients might be needed to hold the
standard deviation of the posterior probability at
a desired value.

4.4 Generalized Form Simulations
Plots of the standard deviation of the poste-
rior probabilities of the generalized Perplexed

Bayesian classifier computed using Equation 38
for different values of the attenuation coefficient
k are shown in Figure 4.

The plots show that the magnitude of the stan-
dard deviation can be increased or decreased, for
a given set of features, by picking a suitable value
of k.

In each of the above simulations, each point in
the graph was computed by averaging the results
of 1000 experiments.

5 Proof 3:

In this section, we attempt to prove that the
classification decisions of the Perplexed Bayes
classifier (with an approximation to reduce the
weightage given to the prior) are identical to the
classification decisions of the Naive Bayes clas-
sifier.

A comparison of Equation 4 with Equation 8
shows that the class conditional feature probabili-
ties have a far greater say in the outcome of clas-
sification in the Naive Bayes classifier than in the
fully Perplexed Bayes classifier.

In the former, as the number of features in-
creases, the prior probability distribution has an
increasingly negligible impact on the posterior
probability distribution since the prior probability
is being combined with an increasing number of
probabilities each representing a feature probabil-
ity. So, if there are ten features being used in clas-
sification, the features have ten times the influence
on the posterior probability distribution than the
prior.

In the case of the Perplexed Bayes classifier,
however, the likelihood is represented by a ge-
ometric average of the class conditional feature
probabilities. So, the features and the prior have
an equal say in the computation of the posterior
probability distribution.

Simulations of classification accuracy using
generated joint probability distribtions show that
giving the prior equal weightage is not conducive
to classification accuracy. The accuracy ratios in
Figure 5 indicate that the fully Perplexed Bayes
classifier has significantly lower accuracy than the
Naive Bayes classifier.

So two approximations, both of which can re-
duce the role of the prior in classiciation, are pre-
sented below. The first approximation involves
flattening the prior so that it doesn’t favour one
category over another by replacing P (C) by a con-
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Figure 5: Perplexed Bayes / Naive Bayes accuracy
ratio in simulations against feature counts (each
accuracy ratio computed by averaging the results
of one thousand simulations).

stant in Equation 38. The result is Equation 39
where N ′ is the normalizing factor.

P (C|F ) =

 ∏
1≤i≤n

P (fi|C)

 k
n

× 1

N ′
(39)

This is equivalent to giving the prior no weigh-
tage at all.

However, it is seen, in simulations, that a Per-
plexed Bayes classifier with the prior removed
from consideration as shown in Equation 39 is as
accurate as the Naive Bayes classifier (there is no
significant improvement or deterioration in accu-
racy averaged over 1000 simulations).

However, it is possible to obtain the same ac-
curacy as a Naive Bayes classifier and yet retain
the posterior probability characteristics of the Per-
plexed Bayes classifier using the approximation
shown in Equation 40.

P (C|F ) =

(
(
∏

i P (fi|C))× P (C)
) k

n+1

N ′′
(40)

It can be seen from Equation 40 that the pos-
terior probability of a Perplexed Bayes classifier
computed in this way is nothing but the k/(n +
1)th root of the posterior probability of a Naive
Bayes classifier. So, their accuracies must be the
same, because if a positive real number a is
greater than b, then ak/N must also be greater
than bk/N where k and N are constants.

Q.E.D.: Thus we have shown that the classi-
fication decisions of the Perplexed Bayes classi-
fier with an approximation to reduce the weigh-
tage given to the prior are identical to the clas-
sification decisions of the Naive Bayes classifier.

6 Conclusions

We have shown that it is possible to build a clas-
sifier that we call the Perplexed Bayes classifier,
that can (with an approximation) make classifica-
tion decisions that are identical to those of a Naive
Bayes classifier.

We have shown that if a certain assumption that
the Perplexed Bayes classifier’s posterior proba-
bility equation can be derived from holds, then the
Perplexed Bayes classifier can be shown to not as-
sume that the features used are class-conditionally
independent.

We have also shown experimentally in other
work (Carlos, 2015) that a Perplexed Bayes clas-
sifier incorporating an attenuation coefficient can
produce better calibrated posterior probabilities on
the given data set than a Naive Bayes classifier for
higher feature counts.

All the above suggests that naive independence
assumptions do not necessarily contribute to the
accuracy of the Naive Bayes classifier, and possi-
bly have a deleterious effect on posterior probabil-
ity estimates instead.

7 Future Work

Since the Perplexed Bayes correction rectifies a
shortcoming in the multiplicative combination of
class-conditional feature probabilities, it is be-
lieved that it might be possible to apply with the at-
tendant benefits of better posterior probability es-
timates, to any system where the product operator
is used to combine probabilities, including hierar-
chical Bayesian classifiers, Probabilistic Graphi-
cal Models and Hidden Markov Models with mul-
tiple emissions. Experimental studies of the per-
formance of such systems before and after the ap-
plication of the Perplexed Bayes correction would
be very interesting.

It does not follow from the three proofs that the
Perplexed Bayes classifier does not make indepen-
dence assumptions, because the proofs derive the
posterior probability equation from the assump-
tions that imply the absence of the naive assump-
tion, but not the other way round.



Further work to establish or reject the hypoth-
esis that the Perplexed Bayes classifier does not
make the same naive independence assumptions
as the Naive Bayes classifier would be essential to
understanding why the Perplexed Bayes classifier
produces better posterior probabilities on the data
set that we ran the experiments on. Experiments
to test the calibration of the Perplexed Bayes clas-
sifier on data sets with very large numbers of fea-
tures are also needed.
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