
Natural Language Programming Using Class Sequential Rules

Cohan Sujay Carlos
Aiaioo Labs

Bangalore, India
cohan@aiaioo.com

Abstract

This paper presents a system for Natural
Language Programming using Class Se-
quential Rules (CSR). The system recog-
nizes a number of procedural primitives
and operators. The domain of the system
is presently limited to the world of num-
bers and operations on numbers. We eval-
uate the effectiveness of CSRs at the task
of Natural Language Programming using
an annotated corpus of programming in-
structions in natural language, achieving a
precision and recall of 85% and 64% re-
spectively. We also compare the perfor-
mance of a system trained on annotated
data with that of a system using hand-
crafted rules.

1 Introduction

Since the early days of computing, there have been
those who have longed for a programming sys-
tem wherein the use of a formal symbolism for
programming was not strictly necessary. Though
high level languages greatly improve the ease of
programming, it might be easier for a user to be
allowed to communicate with an application in
a natural language rather than a formal language
with a specialized syntax. Moreover, a significant
fraction of the population of the world is not con-
versant in the English language or remains unfa-
miliar with the Roman alphabet, and for them, a
system for programming in their native tongues
would be of great benefit. It is also easy to fore-
see a future where speech recognition systems are
so accurate and robust that users might seek to
provide instructions by means of speech to their
computers. Thus there seems to be a need for
algorithms capable of accepting commands and
programming instructions in unconstrained human
languages.

Type Arity Example
if 2 or 3 If x is 2, say “Hi”
unless 2 Exit unless x is 2
while 2 While x ≤ 2 . . .
until 2 Till x is 2 add 1 to x
continuation 1 Also, increment y
assignment 2 Let x be 1
imperatives 0 to ∞ Display x
questions 1 What is y?
y/n questions 1 Is x equal to 2?

Table 1: Types of Procedural Primitives.

We present a Natural Language Programming
system capable of accepting programming com-
mands in a natural language, executing them and
returning any requested results to the user. It is
limited to the domain of real numbers and can
be used to write programs to compute the values
of various functions of real numbers, or to gener-
ate different number series. The system can rec-
ognize nine broad categories of procedural prim-
itives, some of which are conditionals, loops, as-
signments and function calls (imperatives). The
complete list of types of procedural primitives
with their arity and examples of usage can be
found in Table 1.

We also present and evaluate a novel approach
for processing user instructions. Instead of the tra-
ditional programming language approach of using
a parser to produce a parse tree starting from mod-
ules or blocks of programming instructions, we
first break up the programming instructions into
sentences. We then use a short text classifier to
first classify each resulting sentence into one of
the categories of primitives listed above. Then we
perform entity extraction to obtain as many con-
tiguous and non-overlapping word subsequences
as the arity of the primitive recognized, and then
repeat the process with each of the word subse-



quences. Our system is capable of learning to rec-
ognize programming instructions belonging to the
categories described above from an annotated cor-
pus. It can also use manually crafted rules for the
recognition of commands from sentences in a nat-
ural language.

The output of the above process is a semantic
parse of the program. The semantic parses of con-
secutive sentences are joined into blocks if con-
tinuations are indicated. For example, if the first
line is “If x is 3, display x.” and the second line
is “Also, increment x.”, the first line is semanti-
cally parsed into “x = 3 =>print(x).” and the sec-
ond line is parsed to “also(++x).” Then the two
lines are combined to get “x = 3 =>print(x) &&
++x.” The semantic parse is also an interlingua
representation that can be stored, used to perform
an automatic translation of the program from one
language to another, or executed to obtain the out-
put.

Mihalcea et al (2006) distinguish the two com-
plementary programming tasks of description and
proceduralization. The present paper deals with
proceduralization, the process of constructing pro-
cedures out of steps, blocks, conditionals and
loops. Of the procedural primitives listed in Ta-
ble 1, the first two are conditional statement prim-
itives; the next two are loop primitives; the fifth is
used to construct blocks of statements by aggluti-
nation; the remainder are primitives for steps.

Imperatives tend to be function calls or com-
mands that result in an action or change. Examples
of imperatives include calls to “display the value
of x” and “Go to the step marked ‘Subroutine 1’.”

Wh-questions and yes/no questions have the ef-
fect of displaying the value of a variable, literal
or expression. Yes/no questions are distinguished
from wh-questions because their argument is con-
strained to be a boolean expression whereas wh-
questions can refer to non-boolean variables, liter-
als and expressions.

The set of expressions supported by the system
is listed in Table 2. It will be observed that many
commonly used mathematical operations like ex-
ponentiation and logarithms are not included in the
list. The list does however include the arithmetic
and relational operators that have their own key-
words in the C, C++ and Java programming lan-
guages. At present, only two of the logical opera-
tors, namely or and and, are supported.

The rest of this paper is organized as follows:

Expression Arity
addition 2
subtraction 2
multiplication 2
division 2
modulus 2
divisible 2
equality 2
inequality 2
less than 2
less than or equal to 2
greater than 2
greater than or equal to 2
conjunction 2
disjunction 2
negation 1

Table 2: Expressions.

Section 2 presents related work on the topic of nat-
ural language programming. The annotated cor-
pus used to evaluate the system and the annota-
tion guidelines for the same are presented in Sec-
tion 3. Section 4 describes the entity recognition
algorithms in some detail. The entity recognition
systems are evaluated in Section 5 on the anno-
tated corpus, and the novel approach of training a
natural language programming system from anno-
tated text is compared with the approach of using
manually crafted rules. The conclusions and fu-
ture directions are presented in Section 6.

2 Related Work

Attempts to develop natural language program-
ming systems have been made in the past, and a
working prototype called “NLC” was described by
Ballard and Biermann (1979). NLC was capable
of accepting English commands in the imperative
mood. It did not accept declaratives and interrog-
atives. Each input was required to begin with an
imperative verb. However, NLC was capable of
dealing with pronominal references, like the ones
in the command “Put the average of the first four
entries in that row into its last entry” and with pro-
cedure definitions and loops, though not with con-
ditionals. A sample NLC program from Ballard
and Biermann (1979) is provided in Table 3. An
example of a looping instruction in NLC is the last
line of the sample program that instructs the com-
puter to repeat the preceding steps over other rows
of the matrix under consideration. Biermann et



“Choose a row in the matrix”
“Divide its last entry by 3”
“Repeat for the other rows”

Table 3: Sample NLC Program.

Take the array [3, 5, 7, 4, 6, 2, 1].
Count from one up to the size of the array:
Go over the array from the beginning to the
end minus the counter:
If the current element is bigger than the
following element then exchange the current
element with the following element.
Print ”After: ” and print the array.

Table 4: Sample Pegasus Program.

al (1983) also described attempts to provide com-
mands to the NLC system using the Nippon Elec-
tric DP-200 Connected Speech Recognizer.

Knoell and Mezini (2006) described a program-
ming language called Pegasus that lets users pro-
gram using plain German or English statements.
Pegasus uses a handcrafted phrase structure gram-
mar to parse English or German language com-
mands and convert them into an intermediate rep-
resentation. The intermediate representation is
turned into a Java program using a dictionary of
code snippets or translated into a different lan-
guage. Knoell and Mezini (2006) did not perform
an evaluation of the system on a corpus of natural
language programming commands. A sample pro-
gram written in the Pegasus language (see Table 4)
was provided in the paper to show what a Pegasus
program to sort an array of numbers would look
like.

Objections to Natural Language Programming
have been recorded, most notably by Dijkstra
(1978) in an article titled ‘On the Foolishness of
“Natural Language Programming”’. Knoell and
Mezini (2006) on the other hand opine that a sys-
tem capable of dealing with both, formal symbol-
ism and natural text, might be better than one that
only understands either.

A system for generating program skeletons
from the text of programming assignments like the
one shown in Table 5 was described by Mihalcea
et al (2006). The system did not attempt to gener-
ate an executable program.

Pane and Myers (2000) studied how non-
programmers would describe solutions to prob-

Write a program to generate 1000
numbers between 0 and 99 inclusive.
You should count how many times
each number is generated and write
these counts out to the screen.

Table 5: Programming Assignment.

lems arising within a Pacman game, and from their
study, Pane and Myers (2001) proposed several
principles of usability for developing a program-
ming system for children. Lieberman and Liu
(2006) examine mixed-initiative dialog as a way
of more precisely ascertaining user intention with
respect to programming commands, again in the
context of the Pacman game.

The present work is also related to the area of
natural language understanding. Shapiro (2001)
describes a system that understands user state-
ments about their beliefs about the world. This
is in essense a form of descriptive programming,
similar to that described in Lieberman and Liu
(2005) who explore the possibility of using nat-
ural language descriptions as a representation for
programs, and describe a system called “Metafor”
capable of generating Python scaffolding (referred
to as the visualization code) from them, though not
fully specified programs.

There has been, to our knowledge, no prior at-
tempt to measure the performance of a natural lan-
guage programming system using a corpus of an-
notated programming statements in a natural lan-
guage. There has also not been, to our knowledge,
any prior attempt to use entity recognition on nat-
ural language commands to generate fully speci-
fied programs. We also believe that this is the first
attempt to learn patterns of language for program-
ming from an annotated corpus.

3 Data Set

At the time of writing, there was no corpus avail-
able for evaluating the performance of a sys-
tem for procedural programming in a natural lan-
guage. Therefore, a corpus was developed1 con-
sisting of sentences in the English language, which
the contributors of the sentences perceived to be
commands that ought to invoke the programming
primitives listed in Table 1 or specify the expres-
sions listed in Table 2.

1The annotated corpus can be downloaded from the URL
http://www.aiaioo.com/corpora/vaklipi2011.



Order Survey Question
1 How would you say “x = 2” in English?
2 How would you say “x != 2” in English?
4 How would you say “x ≤ 2” ?
6 How would you say “x ≥ 2” ?
9 How would you say “x multiplied by 2” ?
10 How would you say “x / 2” ?

Table 6: Survey Questions.

The sentences were collected by setting up an
online survey on a website, sending out requests
over social networks and using email. All the
questions were presented to the user at the same
time, and the instructions at the top said:

Please type into the box under each of
the following, one way of saying the
same thing in English and click on the
Submit link below it. You can repeat-
edly enter different phrases if you can
think of many ways of saying the same
thing. For example, to communicate the
idea of x = y, you might say x and y are
equal or assign the value y to x.

The survey consisted of a total of thirty ques-
tions, and took approximately thirty minutes to
complete. All users were presented with the same
set of questions and in the same order. The an-
swers provided by previous users were not made
available to subsequent survey takers.

A total of 3,517 sentences2 was collected over a
period of one month.

The annotation procedure involved recategoriz-
ing the submissions according to the procedural
primitive or expression they most closely matched
and marking the entity spans according to the fol-
lowing annotation rules:

• Conditional primitives: A complex sen-
tence specifying a condition for performing
an action is a conditional statement. It is
classified as an if conditional statement if it
is conditional upon a positive outcome of
the conditioning expression and the action to
be taken does not undeniably suggest repeat-
edly checking the conditioning expression as
a precondition for performing the action. It is

2The number 3,517 included blank sentences and names
as well. When these were removed, we were left with about
3,100 sentences of which we annotated 3,000.

classified as an unless conditional statement
if it is conditional upon a negative outcome
of the conditioning expression.

• Loop primitives: A complex sentence speci-
fying a condition that is repeatedly evaluated
for performing an action until it is satisfied
or denied is a loop statement. It is classified
as a while loop statement if it is conditional
upon a positive outcome of the conditioning
expression. It is classified as an until loop
statement if it is conditional upon a negative
outcome of the conditioning expression.

• Operations with side effects: Requests to
add a value to a variable or to subtract a value
from a variable are considered increment and
decrement operations if the value of the vari-
able would normally be considered to have
changed at the end of the operation. For ex-
ample, “Add 2 to x” would be considered an
increment operation, whereas “Add x to 2”
would not. The latter would be considered an
addition operation and not an increment op-
eration since it does not suggest a change in
the value of x whereas the former does.

• Operations without side effects: Sentences
in the indicative mood, informative clauses
and phrases are classified as operations that
do not have side effects, if they are not ex-
pected to alter the value of a variable. For
example, “x added to 5” and “x by 5” have
no side effects.

• Relational Operations: The classification of
relational operations like less than depends
on the order in which the parameters are sup-
plied. So, “x is less than 2” and “x is not
greater than or equal to 2” are both valid ways
of representing “x < 2”, but not “2 is greater
than x”. The last example is classified as a
greater than operator.

From the counts for the categories if condi-
tional statement (95 before annotation and 118 af-
ter cleaup) and the unless conditional statement
(64 before and 15 after) it appears to be the case
that people strongly prefer using an if conditional
statement to an unless conditional statement. Thus
the number of test sentences in each of the cate-
gories is not balanced.



4 System Description

As the system is intended for use as a multilin-
gual teaching tool for students of computer pro-
gramming, especially for those who do not pos-
sess a knowledge of English or the Roman al-
phabet, it was thought desirable to use a method
of processing natural language programming in-
structions that would permit the rules for process-
ing instructions to be learnt from annotated text
in a number of possibly very different human lan-
guages.

One approach that seemed very promising was
Class Sequential Rules (CSR) as described by Hu
and Liu (2006). CSRs have been shown to out-
perform existing methods at the task of associ-
ating opinions with product features (Liu et al,
2006). Moreover, CSRs can also be easily created
by hand since they are a subset of cascading gram-
mar rules such as those described by the Com-
mon Pattern Specification Language (CPSL) (Ap-
pelt, 1996), which incidentally was developed as a
language for specifying finite-state grammars for
the purpose of information extraction. It was intu-
itively felt that a less powerful formalism might
not only suffice for the task of processing pro-
gramming commands, but also prove learnable
from an annotated corpus.

4.1 Class Sequential Rules

A Class Sequential Rule consists of a sequence of
ordered tokens, that we indicate by the symbols
i1 . . . in, for example, I = < i1i2i3 >. A CSR
matches a sentence only when each token in the
CSR’s token sequence matches a word token in
the text under evaluation, in the right order. The
CSR I will match a sentence s if and only if, in
the sentence, there is a token s3 that matches i3,
and this token follows a token s2 that matches i2.
This second token must in turn follow a token s1
that matches i1. For example, I will match the se-
quence < i1x3i2x4i3x5 > but not < i2i3 > or
< i3i2i1 >. CSRs like I can be used for classifi-
cation as follows: a number of mutually exclusive
CSRs are assigned to each class and used in con-
junction with a priority or ordering scheme to re-
solve conflicts when CSRs from different classes
match the input.

CSRs can also have class labels c1 . . . cn in their
sequences. A class label can match zero or more
tokens in the sentence. The tokens that class la-
bels match represent entites in the sentences when

Sequences
< c2keab >
< dc2kb >

Table 7: Sequence database.

Length Sequences
1 < c2 >
2 < c2k >
3 < c2kb >

Table 8: Extracted sequences with support 2.

CSRs are used for entity extraction. For example,
the CSR J =< i1c4i2c5i3 > will match the sen-
tence < i1x3x4i2i3 >. The two class labels in
J , namely c4 and c5 will at the same time match
the sub-sequence < x3x4 > and the empty se-
quence <> respectively. As you can see, the ac-
tual matching is performed by the sequence tokens
i1 . . . in. The class labels pick up the tokens in be-
tween.

If two class labels follow one another in quick
succession (are not separated by a token in the se-
quence), for example < i1c2c3i4 >, the extents of
their spans are not well defined. The tokens that
class labels match can be thought of as entities.
Thus, in addition to classification, CSRs can be
said to be capable of performing entity extraction.

The task of understanding a programming com-
mand given in natural language can be broken
down into the two sub-tasks that CSRs perform: a)
classifying the command into one of several cate-
gories of commands; and b) extracting the argu-
ments for further processing. Both tasks can be
performed by CSRs in a single step.

The algorithm for mining CSRs used in the
present work is described in more detail in Hu
and Liu (2006). Using the algorithm, it is possi-
ble to mine sequences with a given minimum sup-
port. For instance, given two sequences such as
those shown in Table 7, and a minimum required
support of 2, it is possible to extract all the pat-
terns of length 1, 2 and 3 indicated in Table 8.
CSRs are only a special case of sequential pat-
terns. With CSRs, the sequential patterns mined
are text tokens. Some algorithms for sequential
pattern mining have been studied in Agrawal and
Srikant (1995).

Other pattern exraction concepts closely related
to CSRs include the surface patterns described by



Sequences
Also { x = 2 }.
Also, { x = 2 }.
Also { if x = 3 , ++x }.

Table 9: Three annotated sentences that demon-
strate the inadequacy of CSRs for natural language
programming.

Order CSRs
1 Also , EXPRESSION .
2 Also EXPRESSION .

Table 10: Class Sequential Rules for the entity
spans in Table 9.

Ravichandran and Hovy (2002), Hearst (1992),
Snow et al (2005) and Lin and Pantel (2001).

In the course of developing a hand-crafted set
of rules for natural language programming us-
ing CSRs, it was observed that the discriminative
power of CSRs did not always suffice. For ex-
ample, it was observed that CSRs could not ac-
curately identify the entity spans in the three sen-
tences listed in Table 9.

The reason is that the two rules in Table 10 are
needed to match the spans in the first two sen-
tences and these are ordered to fire one behind the
other as shown in the table. Now, however, the first
rule “Also , EXPRESSION .” incorrectly picks out
the single entity span in the third sentence owing
to the comma in the middle of the sentence, and
there is no way to rectify the problem using a dif-
ferent number of CSRs or changing the ordering.

Thus, a family of rules with more discriminative
power was needed. We attempted to extend the
concept of CSRs to give them more discriminative
power, as described in the next subsection.

4.2 Extended Class Sequential Rules
The extension that solved the problem described
in the preceding section was that of allowing each
token in the CSR to be an n-gram. The rules pre-
sented in Table 11 contain a special term “NONE”
which indicates an n-gram constraint as follows:

Order Extended CSRs
1 Also NONE , EXPRESSION .
2 Also EXPRESSION .

Table 11: Two CSRs of the extended variety.

• When the term “NONE” appears between
two tokens, the tokens they match in a sen-
tence must be consecutive tokens. This is
equivalent to making tokens on either side of
“NONE” part of an n-gram. In the example
in Table 11, the first rule can only match sen-
tences where a comma immediately follows
the word “Also.”

• The term “NONE” can also appear at the be-
ginning of an extended CSR to indicate that
the following token must appear at the begin-
ning of the matched sentence.

• Similarly, it can appear at the end of an ex-
tended CSR to indicate that the preceding to-
ken can only appear as the last token of a
matched sentence.

The set of rules in Table 11 will be seen to be
able to match all three sentences’ spans correctly.

4.3 Rule Selection and Ordering
The two parameters used to evaluate the suitability
of a rule are support (the percentage the sentences
belonging to a category that it correctly identifies
as belonging to that category) and confidence (the
percentage of matches of the rule that were right),
which are analogous to precision and recall. Only
those rules were selected whose support and con-
fidence values on the training data both exceeded
minimum thresholds. The selected rules were or-
dered as follows:

• Rules whose accuracy of span matching ex-
ceeded the threshold were placed first.

• Rules whose accuracy of span matching fell
below the threshold followed.

• Within the two categories described above,
longer rules went ahead of shorter rules.

4.4 Intermediate Representation
The intermediate representation is a programming
language that mimics the ambiguities of the lan-
guage used in mathematics. The intermediate rep-
resentation differs from a conventional program-
ming language like Python in the following ways:

• Terms which tend to be ambiguous in nat-
ural language remain so in the intermediate
representation. For example, the ‘assignment
operator’ doubles as the ‘equal to operator’



Let x be 3. y is 9.
What is x times y?
While x is less than y, print x and
then increment x.

Table 12: Sample commands in our system.

in many natural languages. This overloading
poses no problem since the right form can be
resolved from context.

• The intermediate representation also attempts
to capture the logical operator priority of In-
dian languages. In many Indian languages,
it is not possible to set or-phrases as sub-
phrases of and-phrases. So, we have chosen
a priority order for operations in the interme-
diate representation that naturally maintains
the restriction.

A program written in the present system would
look like that in Table 12.

5 Evaluation and Results

The natural language programming system was
evaluated against the annotated corpus described
in Section 3. The manual rules used in the eval-
uation were developed and fixed prior to the start
of corpus collection to avoid the introduction of
biases through any knowledge of the corpus to be
tested on.

5.1 Categories
The categories that were used in testing were
equality, inequality, less than, greater than, less
than or equal to, greater than or equal to, addi-
tion, subtraction, multiplication, division, incre-
ment, decrement, if, while, unless, until, print,
conjunctive, disjunctive, divisible and continua-
tion.

The categories in the corpus that were left out
of the evaluation were as follows:

• Three categories were left out because of the
lack of manually crafted rules for those cate-
gories.

• Of the three categories recognized as the print
command by the manual rules, only one was
retained for the experiment.

• Two of the omitted categories were merely
synomyms for boolean constants ‘true’ and
‘false.’

Category Cnt Precision Recall F1
equality 298 79.0± 06 66.5± 19 71.9± 10
inequality 165 90.6± 14 78.6± 06 84.3± 09
less than 151 66.8± 10 88.4± 07 76.8± 08
≤ 137 99.1± 02 75± 13 86.0± 07
more than 158 76.6± 08 83.1± 06 79.6± 02
≥ 132 92.9± 05 80.8± 13 86.5± 09
addition 140 97.9± 04 61.2± 10 77.2± 06
subtract 113 92.5± 15 71.0± 06 80.8± 06
multiply 144 98.8± 02 64.1± 12 79.4± 08
division 143 89.8± 10 69.8± 08 79.2± 09
increment 136 92.5± 08 57.3± 08 72.8± 08
decrement 131 96.9± 06 23.5± 15 46.7± 15
if 118 84.2± 05 96.0± 08 89.8± 04
while 61 92.1± 02 88.0± 12 89.8± 11
unless 15 100± 00 60.7± 15 77.6± 09
until 86 98.8± 02 85.8± 15 91.9± 08
print 82 92.3± 06 33.9± 14 55.1± 09
and 68 52.8± 11 82.8± 14 66.1± 12
or 67 92.1± 08 37.8± 04 58.8± 03
divisible 66 92.7± 08 71.1± 18 80.7± 10
continue 48 78.3± 23 22.1± 11 40.0± 05

Table 13: Evaluation of CSR-EX.

• The modulus operator was left out of the
evaluation because the manual rules treated
the operator as ‘modulus’ whereas the ques-
tion used in the survey used to develop the
corpus had suggested that the operator was
the ‘absolute value’ operator.

5.2 Experiments
The 3,000 sentences in the annotated corpus be-
long to 29 distinct categories of which 21 are used
for evaluating the system. Support and confidence
values of 0.0001 and 0.703 respectively were used
during training (for rule discovery).

Since we performed 3-fold cross validation,
three sets of experiments were conducted for each
of the following settings, for a total of 9 experi-
ments in all:

• Conventional CSRs (CSR-BL)

• Extended CSRs (CSR-EX)

• Manually crafted rules (CSR-Man)
3These values were manually chosen keeping in mind the

small size of the corpus. The support threshold was chosen
to be low enough to not affect rule selection. The confidence
threshold was kept low enough to permit single failures (in-
correct matches) from time to time.



Setting Prec. Recall F1
CSR-Man 89.2± 3.7 64.8± 6.2 73.0± 4
CSR-BL 85.7± 4.5 65.3± 5.9 73.1± 4
CSR-EX 88.4± 3.4 66.5± 5.6 74.8± 3

Table 14: Categorization Evaluation.

Metric CSR-Man CSR-BL CSR-EX
PSCS 52.4± 9.1 50.2± 8.4 49.7± 8.6

Table 15: Entity Span Matching Evaluation.

In all experiments, the Precision, Recall and F1
Score (the harmonic mean of Precision and Re-
call) were measured for each of the categories, as
well as the overall accuracy of categorization. The
Precision, Recall and F1 scores for the CSR-EX
algorithm are presented in Table 13. In the second
column of the table is listed the number of sen-
tences used in the test. This value in some cases
drops to as low as fifteen sentences. The confi-
dence intervals are rather high, making it difficult
to draw comparisons between algorithms based on
this data. The average of these scores for all cate-
gories is reported in Table 14.

The accuracy of entity span boundary detec-
tion is measured as follows: A recall-based score
for correct span detection is computed by dividing
the number of sentences with perfectly identified
spans by the number of sentences in the category.
This score is reported as the PSCS (percentage of
sentences with correct spans). This score is simi-
lar to but not quite the same as the PCS (percent-
age of correct scopes) metric used in Councill et al
(2010).

The PSCS scores for the three algorithms are
reported in Table 15. We observe from the results
that for the corpus the evaluation was performed
on, there is no significant difference between the
algorithms evaluated.

The overall accuracy scores presented in Ta-
ble 16 again reveal no significant differences be-
tween CSR-Man, CSR-BL and CSR-EX in their
behaviour with respect to the data-set.

Metric CSR-Man CSR-BL CSR-EX
Acc. 64.3± 7 64.4± 6 66.0± 4

Table 16: Accuracies.

6 Conclusions and Future Work

This paper presents a system for Natural Language
Programming capable of recognizing a number
of categories of procedural programming instruc-
tions in a natural language. The system uses Class
Sequential Rules to convert a natural language rep-
resentation of a program into an intermediate rep-
resentation that can be executed. The system is
capable of using manually crafted rules or rules
learnt from an annotated corpus.

Since no corpus was available for evaluation of
a system for Natural Language Programming, a
corpus consisting of 3,000 sentences in twenty-
nine categories (of which only twenty-one were
used), was collected over the internet, cleaned, re-
categorized, annotated with entity spans and made
publicly available.

Since the existing formalism of Class Sequen-
tial Rules (CSR-BL) was not powerful enough to
tease certain sets of sentences apart into the right
categories, an extension to Class Sequential Rules
was proposed (CSR-EX) and implemented.

Finally, the system was evaluated by three-fold
cross validation using the corpus. Three settings
of the system were tested: a) a setting where it
used extended CSR-EX rules manually crafted be-
fore the collection of the corpus; b) a setting where
it used CSR-BL rules learnt from the annotated
corpus; and c) a setting where it used CSR-EX
rules learnt from the annotated corpus. Precisions
of around 85% and recalls of approximately 64%
were measured with confidence intervals as large
as 7%. The large confidence intervals make it
impossible to establish if one of the approaches
works better than the others with the present cor-
pus and the present set of categories.

Future research could include an evaluation on
a larger corpus, on more languages and on the sys-
tem’s ability to adapt to new domains. It would
also be interesting to examine system accuracies
with an increased number of categories covering
more operations and functions. It might also be
of interest to build a corpus of complete programs
rather than individual sentences, to capture more
variations in language.

Acknowledgments

We are very grateful to all the volunteers who con-
tributed to the corpus and to Govind Sharma, Kar-
tik Asooja, Dr. Pushpak Bhattacharyya and the
reviewers for helpful suggestions and references.



References
Rakesh Agrawal and Ramakrishnan Srikant. 1995.

Mining Sequential Patterns. In Proceedings of the
Eleventh International Conference on Data Engi-
neering IEEE Computer Society Washington, DC,
USA. 1995.

Douglas E. Appelt. 1996. The Common Pattern Spec-
ification Language. In Proceedings of a workshop
on held at Baltimore, Maryland. 1996, 23–30.

Bruce W. Ballard, Alan W. Biermann. 1979. Program-
ming in Natural Language: “NLC” as a prototype.
Proceedings of the 1979 annual conference. 1979,
228–237.

Alan W. Biermann, R. Rodman, Bruce W. Ballard, T.
Betancourt, G. Bilbro, H. Deas, L. Fineman, P. Fink,
K. Gilbert, D. Gregory, F. Heidlage. 1983. Inter-
active natural language problem solving: a prag-
matic approach. In ANLC ’83, Proceedings of the
first conference on Applied Natural Language Pro-
cessing, 1983.

Isaac G. Councill , Ryan McDonald , Leonid Ve-
likovich. 2010. Whats Great and Whats Not:
Learning to Classify the Scope of Negation for Im-
proved Sentiment Analysis. In Proceedings of the
Workshop on Negation and Speculation in Natural
Language Processing (NeSp-NLP 2010). 2010.

Edsger W. Dijkstra. 1978. On the foolishness of “Nat-
ural Language Programming”. In Program Con-
struction. 1978, 51–53.

Marti A. Hearst. 1992. Automatic Acquisition of Hy-
ponyms from Large Text Corpora. In Proceedings of
the 14th conference on Computational Linguistics -
Volume 2. 1992.

Minqing Hu and Bing Liu. 2006. Opinion Feature Ex-
traction Using Class Sequential Rules. AAAI Spring
Symposium on Computational Approaches to Ana-
lyzing Weblogs, Palo Alto, USA, March 2006.

Roman Knoell and Mira Mezini. 2006. Pega-
sus First Steps Toward a Naturalistic Programming
Language. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming
systems, languages, and applications. 2006, 542–
559.

Henry Lieberman and Hugo Liu. 2005. Metafor: Visu-
alizing stories as code. In 10th International Con-
ference on Intelligent User Interfaces. 2005.

Henry Lieberman and Hugo Liu. 2006. Feasibil-
ity studies for programming in natural language.
Lieberman, Paterno, Wulf (Eds.): End-User Devel-
opment (Human-Computer Interaction Series Vol.
9), Springer, 2006, 459–474.

Dekang Lin and Patrick Pantel. 2001. Discovery of
inference rules for question-answering. In Journal

Natural Language Engineering archive Volume 7 Is-
sue 4, Cambridge University Press New York, NY,
USA. December 2001.

Bing Liu, Minqing Hu and Junsheng Cheng. 2005.
Opinion Observer: Analyzing and Comparing Opin-
ions on the Web. In Proceedings of the 14th Inter-
national World Wide Web conference (WWW-2005),
Chiba, Japan. 2005.

Rada Mihalcea and Hugo Liu and Henry Lieberman.
2006. NLP (Natural Language Processing) for NLP
(Natural Language Programming). In Proceedings
of CICLing. 2006, 319–330.

John F. Pane and Brad A. Myers. 2000. The Influ-
ence of the Psychology of Programming on a Lan-
guage Design: Project Status Report. In Proceed-
ings of the 12th Annual Meeting of the Psychology
of Programmers Interest Group, A. F. Blackwell and
E. Bilotta, Eds. Corigliano Calabro, Italy: Edizioni
Memoria, April 10-13 2000, 193–205.

John F. Pane, Chotirat Ann Ratanamahatana and
Brad A. Myers. 2001. Studying the language
and structure in non-programmers’ solutions to
programming problems. In International Journal
of Human-Computer Studies Volume 54, Issue 2,
February 2001, 237–264.

Deepak Ravichandran and Eduard Hovy. 2002. Learn-
ing Surface Text Patterns for a Question Answering
System. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguis-
tics, 2002.

Stuart C. Shapiro. 1989. The CASSIE Projects: An
Approach to Natural Language Competence. EPIA,
1989, 362–380.

Rion Snow, Daniel Jurafsky, Andrew Y. Ng. 2005.
Learning Syntactic Patterns for Automatic Hyper-
nym Discovery. In Advances in Neural Information
Processing Systems 17. 2005, 1297–1304.


